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Abstract

Charlton et al. (2008) (Charlton, R.A., Landua, S., Schiavone, F., Barrick, T.R., Clark, C.A., Markus, H.S., Morris, R.G.A., 2008. Structural
equation modelling investigation of age-related variance in executive function and DTI-measured white matter change. Neurobiol. Aging
29, 1547–1555) presented a model that suggests a specific age-related effect of white matter integrity on working memory. We illustrate
potential pitfalls of structural equation modelling by criticizing their model for (a) its neglect of latent variables, (b) its complexity, (c) its
questionable causal assumptions, (d) the use of empirical model reduction, (e) the mix-up of theoretical perspectives, and (f) the failure to
compare alternative models. We show that a more parsimonious model, based solely on the well-established general factor of cognitive ability,
fits their data at least as well. Importantly, when modelled this way there is no support for a role of white matter integrity in cognitive aging
in this sample, indicating that their conclusion is strongly dependent on how the data are analysed. We suggest that evidence from more
conclusive study designs is needed.

© 2009 Elsevier Inc. All rights reserved.
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. Introduction

In an article recently published in this journal, Charlton
t al. (2008) utilized structural equation modelling (SEM)
o test various predictions that they derived from two domi-
ant hypotheses of cognitive aging—the ‘common cause’ and
he ‘specific gain/loss’ hypotheses (Span et al., 2004)—in a
ataset of over 100 adults between 50 and 90 years of age. The
ata included a broad array of cognitive tests and measures
f white matter integrity based on diffusion tensor imaging

DTI). SEM is a powerful statistical tool for analysing mul-
ivariate data, as often found in studies of neurobiology and
geing. Still, SEM remains underused in cognitive neuro-
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cience, which is why we welcome Charlton et al.’s article.
owever, using SEM is not without pitfalls, and diagrams
f SEM models tend to convey a misleading impression of
efiniteness. In this commentary, we aim to raise the aware-
ess of researchers in the field of neurobiology of ageing to
ome caveats that need to be kept in mind when applying or
eading about SEM analyses, using Charlton et al.’s study as
n example. For a more general treatment of the topic, we
efer the reader to textbooks like Kline’s (2005), Loehlin’s
2004), or Bollen’s (1989).

. Guidelines for structural equation modelling
.1. Prepare your model

In a nutshell, a SEM analysis tests how well a pre-
pecified set of assumptions about the linear associations
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f the studied variables (the ‘model’) is able to reproduce
he variance-covariance matrix of the observed variables.
hus, SEM is not very suitable for merely describing or
xploring data: it is a strictly model-testing approach. What
s tested is whether the model is plausible given the data.

ost importantly, SEM can never prove or confirm that
model is correct, it can only falsify implausible models

Freedman, 1987, 2005; Tukey, 1954). Arguably, the most
rucial part of a SEM analysis is specifying the model that
s tested, which should happen a priori based on existing
heory and evidence (Freedman, 1987).

.2. Consider latent traits

One of the biggest advantages of SEM is that, whenever
everal variables are assessed that are meant to measure the
ame construct (e.g., mental speed or working memory),
hese so-called manifest variables can be used to model
he construct directly as a ‘latent variable’. Latent variables
ontain only the variance that is shared by all measured
ariables. Therefore, they are free of unsystematic measure-
ent errors and other sources of variance that are specific to

ny one manifest measure. As a consequence, estimates of
elationships involving latent variables will be more reliable
Loehlin, 2004). While Charlton et al. had assessed each
f the four cognitive constructs they hypothesised (speed,
exibility, fluid intelligence, working memory) with two

o three indicators, they did not take advantage of latent
ariables in their SEM analysis. They used averages of
ndicator scores instead (i.e., only manifest variables).

.3. Consider competing alternative models

It is always possible to specify a SEM model that triv-
ally ‘fits’ the data perfectly. Such a model simply needs
o contain all possible relationships (called ‘paths’) between
ll variables, thus inevitably accounting for all the observed
ovariance. However, this model will be saturated, prohibit-
ng a statistical test against the data. Any less complex model
ith fewer assumed relationships can be tested, but the num-
er of possible models is usually large, and there can be
ifferent models that fit the data equally well. Thus, it is
ecessary to have theory-guided hypotheses to begin with.
hen different theories suggest different models, like the

ommon cause and the specific gain/loss theories considered
y Charlton et al., SEM allows for testing these models sep-
rately and comparing their fit. Charlton et al., however, did
ot test the alternative models they had derived from the lit-
rature against each other, but instead tried to include almost
ll paths that have been suggested by any theory at the same
ime (and actually regretted that they were unable to include
ll of them, p. 1548).
.4. Apply Occam’s razor as appropriate

More complex models (like Charlton et al.’s all-inclusive
nitial one) might fit the data better, but they entail a great
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isk of capitalizing on spurious relationships that are spe-
ific to the current dataset. Of course, complex models might
ccurately reflect the complexity of reality and indepen-
ent replication can then help to make complex models
ith good theoretical rationales more plausible, but in most

ases researchers are better advised to specify parsimo-
ious models, containing only the most relevant relationships,
hich are more likely to be generalisable. This is espe-

ially true in smaller datasets, since SEM results become
nstable when the ratio of free parameters to cases is
arge (Kline, 2005 suggests at least 10 cases per parame-
er). Since Charlton et al. started by mixing assumptions
rom various theoretical perspectives, their initial model
as highly complex and had 19 free parameters, leav-

ng them with less than 6 cases per parameter in their
ample.

.5. Assess the strength of prior theory in hypothesising
ausal associations

For statistical reasons, most paths in SEM models have to
e unidirectional, implying causality. However, SEM anal-
ses are based on correlational data, which are inherently
evoid of causal information (especially when they stem from
ross-sectional studies, as most in cognitive neuroscience do)
Freedman, 2005; Tukey, 1954). Indeed, SEM is unable to
istinguish a model that, for example, assumes a causal effect
f cognitive speed on fluid intelligence (like Charlton et al.’s
oes) from another that assumes a causal effect of fluid intel-
igence on cognitive speed. Both models will yield identical
tatistical results. Thus, causal assumptions in SEM mod-
ls also need to be based on theories. Charlton et al. rest
he many causal assumptions they make in their model on

long list of reference that provide loose suggestions (see
. 1549 of their article), but none of these assumptions can
e considered well-established. Indeed, causal links between
ndividual differences in cognitive abilities, including speed
nd fluid intelligence, have been seriously questioned (Kovas
nd Plomin, 2006; Luciano et al., 2005; Plomin and Spinath,
002).

.6. If possible, use theory to guide changes to the model

Initial SEM Models can be modified in an iterative process
owards a better fit to the data by adding or dropping paths
rom the model. Such modifications can be useful if they
re justified by a theoretical rationale. In these cases, they
an be understood as a form of comparing alternative mod-
ls. Charlton et al., however, reached their final model (that
tarted from a mixture of different theories) in a sequential
eduction process that relied solely on what was empirically

uggested (as automatically done by many SEM programs).
uch an exploratory procedure it is not advisable, as it is prone

o capitalizing on non-generalisable chance relationships in
he data.
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. An alternative model

Taken together, Charlton et al. presented only one of the
any possible SEM models that would be supported by their

ata, and theirs can be questioned for its assumptions and
or being overly fitted to their particular dataset. The critical
oint here is that the conclusion they draw from their model,
n particular the age-related effect of white matter integrity
n working memory, might fail to receive support from other
odels that are also supported by their data. To illustrate this,
e tested an alternative model against their data. Because
harlton et al.’s original data were not made available to us,
e used the correlation matrix in Table 3 of their article pro-
isionally for this purpose. Testing alternative SEMs based
n published correlation matrices is a common and accepted
rocedure that, if interpreted carefully, yields very similar
esults to models derived from original data (Cudeck, 1989).

The alternative model we propose is depicted in Fig. 1. It
s important to note that it was formulated using the estab-
ished guidelines for SEM that we described above. With
nly 13 free parameters it is very parsimonious. The model
s based on the well-established finding that different tests
f cognitive ability tend to share approximately 40–60%
f their variance, giving rise to a common or general fac-
or of cognitive ability (usually abbreviated as “g”). Since
his g factor is based on more than a century of cumulative
esearch (Carroll, 1993; Jensen, 1998), has reached consen-
us among intelligence researchers (Neisser et al., 1996), and
as been called the best-replicated finding in all psychology
Deary, 2000), it provides a very solid base for an alternative
odel. Crucially for the current context, it has been repeat-

dly found that cognitive ageing effects are principally on
(e.g. Salthouse, 1994, 1996; Salthouse and Czaja, 2000).

t is also the backbone of the ‘common cause’ hypothesis

f cognitive aging (Christensen et al., 2001; Lindenberger
nd Baltes, 1994; Mackinnon et al., 2006; Salthouse et al.,
998), on which Charlton et al. partly base their analysis. In
ur alternative model (Fig. 1), we used all four (aggregates

o
fi
b
t

ig. 1. Alternative common factor model. All path coefficients have been fully sta
ognitive ability composites were formed by Charlton et al. by averaging z-score
nformation processing speed, WAIS-R digit symbol, and grooved pegboard: ‘flexi

emory’: WMS-III digit span backwards and letter-number sequencing; ‘fluid inte
Aging 31 (2010) 1656–1660

f) cognitive measures reported by Charlton et al. to define
latent variable that represents g, which circumvents ques-

ionable assumptions of causal relationships between these
ariables.

We first test the hypothesis that DTI-measured mean dif-
usivity (MD, an index of white matter integrity) might
ediate age effects on this common cognitive factor (g). This
odel fits the data well (χ2(8) = 11.15, p = .19, CFI = .990,
MSEA = .060, SRMR = .037). It shows that one can model
strong common factor in Charlton et al.’s data (explain-

ng 55.7% of the variance of the cognitive tests, and with
ll tests loading highly on it), which is substantially pre-
icted by age (standardized path coefficient β = −.65). It
lso shows that MD is highly correlated with age (β = .77).
o far, so good. However, crucially, MD does not predict g
ver and above what is already predicted by age (β = .01) in
his model. We consequently tested the hypothesis that white

atter integrity has no effect on g that is independent of
ge. To do so, we modified our alternative model (depicted
n Fig. 1) by fixing the path from MD to g to zero, which
ielded a slightly improved model fit (χ2(9) = 11.16, p = .26,
FI = .993, RMSEA = .047, SRMR = .037). We accept this
ven more simple and economical model. It simply states
hat age is associated with the general cognitive factor and
ith MD, but that beyond their association with age, MD and

he general cognitive factor are not associated.
The models in the present report and that of Charlton et

l. are not nested (i.e., subsets of each other). Therefore, for-
ally comparing them is only possible based on comparative
t indices, which do not allow for a significance test (Kline,
005). Based on one of them, Akaike’s Information Criterion
AIC; low values indicating better fit), our alternative (−4.85)
nd modified alternative model (−6.84) fitted the data better
han the full model Charlton et al. proposed based on the the-

retical assumptions they made (−3.11), though they did not
t better than their final model (−8.38), which was improved
y the questionable method of empirical modification. (Note
hat the AICs we report here for Charlton et al.’s models differ

ndardized and can thus be interpreted as regression coefficients. The four
s of the following tests (for details, see their Table 1): ‘Speed’: AMIPB
bility’: D-KEFS trails, Wisconsin Card Sorting Test, and Stroop; ‘working
lligence’: WASI matrix reasoning and block design.
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rom those they reported due to the use of different formu-
as, which do not affect the conclusions.) Also, our models
re more parsimonious, which is not rewarded very much in
he AIC. Alternatively the Bayes Information Criterion (BIC;
gain low values indicating better fit) puts a greater penalty
n overly complex models and might thus be more appro-
riate. When this criterion is used, our model (103.87) and
he modified version of it (96.15) fit better than either Charl-
on et al.’s full (139.97) or final (117.52) model. According
o Raftery (1995), a BIC difference of 10 or more provides
trong evidence that a model fits data better than another. This
s given for both of our models compared to both of Charlton
t al.’s, indicating that at least judged by the BIC our alter-
ative models fit Charlton et al.’s data better than the models
hey presented.

While white matter integrity (MD) clearly had no age-
ndependent effect on general cognitive ability (g) in our
lternative model, it could be argued that there are such effects
n specific cognitive abilities, independent of g. To rule out
his alternative hypothesis, we also tested for MD effects on
he specific variance of each cognitive ability that is indepen-
ent of the common factor. To do so, we fixed all parameters
o the values depicted in Fig. 1 and introduced paths from

D to each of the four cognitive abilities to the model. All
f these path coefficients were smaller than |.09| and within
range of two standard errors, meaning that they failed to

each conventional standards for a significant contribution to
he model. Thus, our alternative models indicate that white

atter integrity had no effect on cognitive ability independent
f age in Charlton et al.’s data.

. Conclusion

SEM is a powerful statistical tool to analyse complex
elationships in multivariate datasets, as are common in the
tudy of neurobiology and aging. However, it can only fal-
ify, but never prove a model. Therefore, it is most powerful
hen different theoretical models can be clearly specified

re compared, so that the one that is most plausible theo-
etically and empirically can be inferred. Whereas Charlton
t al. started with two theoretical perspectives, they failed
o specify competing models based on differentiating pre-
ictions and instead proposed a single complex model that
ixed selective assumptions from both perspectives. From

his model they concluded that white matter integrity had an
ge-related effect on a specific cognitive ability. To exemplify
ow problematic such an approach to SEM is, we presented
ne alternative model based on a single theoretical perspec-
ive which is actually the dominant one in psychometric
ntelligence and cognitive aging research. Even though it is
heoretically clearer, not based on atheoretical modification

o increase model fit, and more parsimonious, it fitted their
ata just as well. However, our alternative model reached this
t even when no relationships between white matter integrity
nd the common factor or on any specific domain of cogni-
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ive ability were assumed. Thus, a model without the specific
hite matter integrity effect on cognitive ageing that Charl-

on et al. emphasise cannot be rejected by their data and
herefore the effect has not been demonstrated conclusively
y Charlton et al.—it depends strongly on how their data is
nalysed.

Our alternative model does not necessarily imply that there
s no effect of white matter integrity on cognitive aging. How-
ver, it suggests that it might be difficult to demonstrate such
n effect in an age-heterogeneous sample, especially when
ge and white matter integrity are as highly correlated as
n this sample (r = .77), making them hard to disentangle.

here establishing causality through experiments, ultimately
he only way, is not possible for ethical or practical reasons (as
s often the case in human ageing research), it might be nec-
ssary to follow Hofer and Sliwinski’s (2001) suggestion and
tudy narrow age cohorts (e.g. Deary et al., 2006), preferably
ongitudinally.
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