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Abstract: Commentators generally found our exposition of the concept of heritability helpful for psychologists, sug-
gesting that we largely accomplished our primary goal. Many provided supplemental and helpful perspectives on
concepts we addressed. A few of the comments indicated that we may not have been completely successful in making
clear our secondary goal, which was to outline how heritability estimates confound a plethora of influences. In this
response, we thus emphasize that we do not claim that specific kinds of complexity, or, even worse, intractable com-
plexity, pervade the genetics of behavioural traits. Rather, our claim is that genetics is riddled with complexity of
many degrees and kinds, and heritability is a poor indicator of either degree or kind of underlying genetic complexity.
Copyright © 2011 John Wiley & Sons, Ltd.
We were pleased to see the 13 thoughtful commentaries our
target article received, coming as they did from people actively
involved in exploring genetic influences on behavioural traits
from both quantitative and molecular perspectives. We thank
all the commentators for their engagement with the topic and
their constructive remarks. This is currently a very active area
of research, and new developments and findings are announced
daily. While many of the developments take place in scientific
disciplines far from psychology, interest in making use of
them to unravel the origins of behavioural traits is high.
We strongly believe that, as with most tools, background
knowledge is important in using the quantitative and molec-
ular genetic technologies now available. This is particularly
important in this area because the new developments are not
only limited to the technological but also extend to the con-
ceptual as well. Our primary goal in writing this article was
to provide this background knowledge, to avoid perpetuation
of the oversimplifications of interpretation that have recently
peppered some applications of these technologies in psychol-
ogy and in other social sciences such as economics and
sociology.
INSIGHTFUL VARIATIONS ON THEMES RAISED
IN PURSUIT OF OUR PRIMARY GOAL

The commentaries suggest that we were largely successful in
meeting our primary goal. All commentators expressed sup-
port for the general thrust of our discussion, with most provid-
ing additional perspectives elaborating on the themes we
raised. Each of these contained an important insight that helps
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to flesh out the possible ways in which genetic influences may
contribute to the heritability statistics that have become famil-
iar to psychologists. Asendorpf noted the importance of rec-
ognizing that heritability estimates made at any point in
time reflect the aggregation of the outcomes of individual
developmental processes and that these developmental pro-
cesses inevitably involve transactions between genetic and
environmental influences. When genetic influences on one
person act to shape the environments of relatives, they can
create either similarity or differences between them, and
the two kinds of influence will have different effects on her-
itability estimates depending on the specific genetic relation-
ships the relatives in the sample on which the heritability
estimates are based. This underlines the fact that even
traits with high heritability are developmentally sensitive to
environmental circumstances.

Burt raised several interesting points regarding gene‐
shared environmental correlation. The possible existence of
this form of gene–environment correlation is arguably one
of the most neglected subjects in psychology. The develop-
mental process involving reinforcement loops to which Burt
refers is well encompassed by Experience‐Producing Drive
Theory (Bouchard, 1997; Hayes, 1962; Johnson, 2010). This
is the idea that, rather than contributing directly to behav-
ioural traits, genetic influences contribute to motivation to
pursue certain kinds of activities and respond to and seek
out particular kinds of stimuli, and the traits develop as con-
sequences of these experiences. To the extent such processes
exist, they certainly constitute potential sources of active
gene–environment correlation with strong developmental
implications. Burt noted that the existence of this process
implies that gene–environment interaction and correlation
are linked in systematic ways, as discussed extensively by
Johnson (2007).
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More generally, the neglect of gene–environment correla-
tion in the field is a serious omission because, if it is present
to any substantial degree, it is likely quite powerful. Its ne-
glect is also no accident, because we currently have no good,
commonly available methods either to detect or to measure
it. Burt claimed that we can use comparisons of heritability
results from adoptive and biological siblings to assess it,
but we see two difficulties with this. Both surround what
we perceive to be misunderstandings of the concept of pas-
sive gene–environment correlation. First, as we discussed
in the target article, there is a tendency for people to equate
passive gene–environment correlation with genetic‐shared
environment correlation, but this is an oversimplification.
Genetic‐shared environmental correlation is nothing more
than the correlation between genetic influences and environ-
mental influences that act to make twins or other pairs of
family members similar. As with the subtleties of the defini-
tion of shared environmental influence itself, shared experi-
ences can act to make these pairs different, thus acting as
nonshared environmental influences. And different specific
experiences can act to make family members similar, thus
acting as shared environmental influences. When these are
correlated with genetic influences, the result is a gene‐shared
environmental correlation, and it can be active or evocative
as well as passive.

An example may help make this clear. Suppose parents
with two children believe strongly, possibly for genetic rea-
sons of some kind, that learning to swim is an important life
skill, and their children should learn to do it. At some appro-
priate age, they enrol them in swimming lessons. One of the
children takes to it like the proverbial duck to water and takes
every opportunity to swim, possibly for genetic reasons of
some kind, although not necessarily the same ones that con-
tributed to the parents’ goal of seeing their children learn to
swim. For this child, there is a passive gene–environment
correlation: genetic influences in the parents provide an envi-
ronment to which the child responds genetically. The other
child sinks like a stone and freezes in the pool, making the
lessons tortuous, possibly for genetic reasons of some kind.
The parents are committed, however, and find some lessons
in a warmer pool, persuade the parents of the child’s best
friend to enrol their child in the same lessons and make op-
portunities to give the child positive experiences in the water.
Eventually, the child learns to swim and in the process even
learns to enjoy it and to do it regularly, with adaptation to the
initial unpleasant experience possibly having some genetic
basis. For this child, there is an evocative gene–environment
correlation: the parents respond environmentally to the
child’s genetically influenced difficulty with swimming. For
both children, there is ultimately some kind of active gene–
environment correlation, as they both regularly go swimming
and do it well. For both children as well, the result is a
gene‐shared environmental correlation, although the genes
and the environments involved for the two children may have
little overlap.

Second, passive gene–environment correlation is a pro-
cess, not a state focused on a result as is shared gene–
environment correlation. Definitions often given for passive
gene–environment correlation refer explicitly to children
Copyright © 2011 John Wiley & Sons, Ltd.
inheriting genetic influences from their parents that contrib-
ute to both the environment the parents create and the chil-
dren’s responses to that environment. The requirement of
direct genetic transmission from parents to children is, how-
ever, overly restrictive. The important aspect of the process is
that it takes place, to the extent it does, passively for genetic
reasons. This may occur most readily in biological families,
but it can also occur in adoptive parent–child relationships
as long as it is passive. That is, the parents are creating some
aspect of the environment for their own genetically influ-
enced reasons without regard to the children’s responses to
it (it is not evocative), and the children are adapting to it
(positively or negatively) for their own genetically influenced
reasons, without in any active way either pursuing it or
avoiding it, for example, if they cannot. This kind of passive
gene–environment correlation may be rarer in adoptive fam-
ilies, but it is in no way impossible and could even be com-
mon, especially in normally distributed traits for which
most people, both parents and children, tend to fall in the
middles of the ranges.

Importantly, we agree with Burt that looking at the
magnitudes of shared environmental influences remains
important in the field today in a way that examining magni-
tudes of genetic influences does not. Our reasons, however,
are different and have little to do with underlying biology.
The idea of genetic influences on behaviour was so contro-
versial for so long that behaviour geneticists formed the
habit of testing the significance of parameters estimating
genetic, shared and nonshared environmental influences in
their models and dropping those that were not significant.
At least partly because, in twin samples, there is less power
to pick up shared environmental influences, this commonly
resulted in the so‐called AE model incorporating only
genetic and nonshared environmental influences being
identified as best. In turn, this has led to an impression in
the field that shared environmental influences are often com-
pletely absent, when in reality, they are merely smaller than
estimates of genetic influences. As long as this impression
predominates, we agree that some focus on the magnitudes
of shared environmental influences are important, even
when they are not statistically significant.

Cramer, Kendler and Borsboom pointed out that one
reason for the lack of success in identifying specific genes
involved in behavioural traits, despite substantial heritabil-
ity, may be that the behavioural traits and especially the
syndromes that have been identified as important may be
networks of causally interrelated behaviours or symptoms.
Gene‐hunting methods for behavioural traits tend to rely
on the assumptions that one set of genes plays a causal role
in all the behaviours defining a trait, especially a syndrome,
and that we can measure the severity of the syndrome
by summing symptom counts. As Cramer, Kendler, and
Borsboom note, if the symptoms instead exist in network
clusters that have reciprocal causal effects on each other, this
is much less likely: each symptom may have its own set of
causally related genes. In such a case, the sum score approach
may produce robust heritability estimates, but the effects of
individual genes may be too blurred in population samples
because some people in each sample with similar syndrome
Eur. J. Pers. 25: 287–294 (2011)
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levels have one pattern of causal relations among symptoms,
and others have other patterns. This is one way of saying that
the phenotype, syndrome or behavioural traits that have been
identified may be genetically emergent rather than latent, or
formative rather than reflective. The difference is that the heri-
tability we estimate in an emergent trait is evidence of a result
of gene action, whereas the heritability we estimate in a latent
trait is evidence of a genetic cause for the trait. Individual traits
can of course have aspects that are both emergent and latent.
Whereas the implicit and likely oversimplified assumption in
differential psychology today is that genetic influences are
single latent causal factors, right now, we simply do not know
the ratio of latent to emergent aspects for any trait or syndrome.
This could be an important direction for future personality and
individual differences research, but heritability estimates
cannot be used to make this distinction. Grigorenko discussed
this blurring of the trait concept in some detail.

Similarly, Jackson, Hill and Roberts listed some addi-
tional ways that heritability has been misinterpreted and
stressed the importance of recognizing that gene expression
can both change with development and be responsive to en-
vironmental circumstance. This indicates that some variance
attributed to heritability may reflect more similar genetic
responses to environmental circumstances by monozygotic
than by dizygotic twins, rather than genetic variance per
se. And Jaffee and Price emphasized that it is not just envi-
ronmental circumstances, objectively measured, that may in-
fluence gene expression but our perceptions of those
circumstances. Lukaszewski took this theme of contributions
to heritability from environmental circumstances a step fur-
ther by noting that environment may also include the pres-
ence of other genetically influenced traits. That is, one’s
status on one genetically influenced trait may influence the
extent to which one develops other characteristics, causing
what has been termed ‘reactive heritability’. One example
that may be pervasive among social animals might be how
genetically influenced physical size and strength influence
the development of dominance behaviours. Such adaptive
facultative adjustments of behavioural strategies to indepen-
dently inherited traits theoretically can evolve, but only if
the link between the heritable trait and the fitness payoff of
the behavioural strategy is stably reliable over long evolu-
tionary time spans (Penke, 2010). Trumbetta and Gottesman
also elaborated on a similar theme, pointing out that many dif-
ferent genetically influenced characteristics may contribute to
diverse developmental trajectories that nevertheless lead to
similar outcomes. They stressed that identification of underly-
ing endophenotypes may help articulate these developmental
trajectories and the genetic mechanisms involved more clearly.
Taken together with the developmental processes outlined by
Asendorpf and the possibility of emergent traits highlighted
by Cramer et al. (where differences in the strength of network
relations might well be the outcomes of developmental
processes), these commentaries nicely illustrate that causal
heterogeneity and developmental equifinality might be wide-
spread. This underlines, as Mitchell reminds us, that we
should not think of genes ‘for’ a trait.

Mitchell turned the discussion towards identification of
the specific genetic variants involved in behavioural traits.
Copyright © 2011 John Wiley & Sons, Ltd.
He noted that many of the techniques we currently use to
identify specific genes involved in traits of interest are based
on the assumption that the variants to be identified are com-
mon in the population. There is, however, increasing evi-
dence that many important genetic variants may actually
be rare, and techniques under development will be able to
identify these rare variants as well. We agree with Mitchell
that a large number of individual rare genetic variants could
collectively make substantial contribution to heritability esti-
mates derived on population levels, as we noted on page 261 of
the target article and in earlier publications (Deary, Penke, &
Johnson, 2010; Penke, 2010; Penke, Denissen, & Miller,
2007). Rare variants with substantial effects by definition
exert those effects on only a few individuals in the population,
and these variants only remain rare if they reduce evolutionary
fitness. This makes the recent observation that genetic variants
are more likely to be functionally meaningful the rarer they are
in the population (Zhu et al., 2011) exactly what we should
expect. Therefore, rare variants are more likely important
contributors to the genetic architecture of traits that consis-
tently decrease fitness (such as physical and mental disorders
or perhaps low intelligence) than of traits with less clear or
variable fitness associations (as is arguably true for normal
range personality traits generally construed; Penke, 2010;
Penke et al., 2007).

Munafo and Flint focused more on the roles of common
genetic variants (as studied in current genome‐wide association
studies) and pointed out that, even if the number of genetic var-
iants involved in a trait is very large, and no one gene has more
than a tiny effect, with the large samples being accumulated,
our methods should eventually reveal these variants as well.
As it stands, molecular genetic research suggests that
quasi‐infinite numbers of common variants or loads of rare
variants (or a mixture of both) are the most likely genetic
architectures of behavioural traits as we study them. If this is
correct, because evolutionary genetic considerations render it
unlikely that rare variants contribute much to personality traits,
soft balancing selection (Pritchard, Pickrell, & Coop, 2010)
might maintain a large number of common variants in
personality.
THEN THERE WAS OUR SECONDARY GOAL

Within our primary goal of providing background knowledge
to psychologists on the concept of heritability, we also had
an important secondary goal. This was to make clear that there
are many possible genetic, psychometric, environmental and
interactive mechanisms that can explain the presence of sub-
stantive heritability estimates on behavioural traits, but the
presence or the magnitude of the heritability estimates is no
clue at all as to which of these explanations might be accurate
in any one situation. Crucially, this means that we were not
advocating any one explanation for ‘missing heritability’, nor
waving our hands at complexity, but arguing that we need to
look well beyond heritability estimates and avoid focusing on
any single explanatory mechanism in order to understand
how genes contribute to the manifestation of behavioural traits.
In particular, we think it likely that the genetic influences
Eur. J. Pers. 25: 287–294 (2011)
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indicated by heritability estimates will prove to have different
kinds of explanations, from among those we discussed, those
raised by some of the commentators and many others not yet
discovered.

Several of the comments suggest that we may not have
made our point about the limitations of heritability as a guide
to underlying genetic mechanisms clearly enough. De Moor
and Boomsma, for example, saw us as stressing the impor-
tance of gene–environment interplay in explaining heritabil-
ity, whereas Jackson, Hill and Roberts charged us with not
going far enough in recognizing the implications of gene–
environment interplay and the ability of the environment to
modify gene expression. It was not our objective to estimate
to what extent this kind of interplay or any of the other possible
explanations might account for ‘missing heritability’ but to
note that, beyond genetic variants of small effect acting addi-
tively, these other possibilities likely are important. Similarly,
Riemann, Kandler and Bleidorn maintained that our discus-
sion of the effectiveness of measurement on heritability esti-
mates was unnecessary because it is obvious that ineffective
measurement distorts estimates of all effects. This is of
course correct, but the implications of ineffective measure-
ment on heritability estimates, especially some of the subtle-
ties we described, are often disregarded. It was also not our
aim, as they claimed, to turn heritability into a dichotomy
but rather to highlight that the influences on the size of heri-
tability estimates are so diverse that there is no straightfor-
ward interpretation for the size of any individual estimate.
Of course, the more some of these influences can be con-
trolled in well‐designed studies (e.g. by all the reliability‐
increasing and validity‐increasing means they list), the better
they can be ruled out as factors distorting the magnitudes of
the resulting heritability estimates. But because it is hardly
possible to control all such influences on heritability in any
single study, sizes of heritability estimates will never be direct
indicators of any one biological quantity.

In contrast, Visscher and Keller defended the idea that
genetically influenced variance is largely made up of additive
effects. In the process, they appear to have misunderstood
several of the points we raised. First, we in no way meant
to deny that substantial heritability is associated with greater
similarity among genetically related people than among people
not genetically related to each other. The point we wanted to
make, which is often missed by many, is that even quite high
pair correlations allow for substantial differences between indi-
viduals within the pairs. Similarly, with respect to rare Mende-
lian diseases, our point in noting that their heritability in
population samples is essentially zero was that, because most
heritability estimates are made in such samples, we have no
way of using them to identify traits where rare Mendelian
genetic variants are important. And we quibble over word-
ing regarding the issue of epistasis causing the appearance
of additive genetic variance. Hill, Goddard, and Visscher
(2008) demonstrated that even completely nonadditive (epi-
static and/or dominant) genetic models generate substantial
genetic variance that can be characterized as additive. To
us, this means that we cannot use correlations among rela-
tives that generate heritability estimates that appear to indi-
cate primarily additive genetic variance to infer that
Copyright © 2011 John Wiley & Sons, Ltd.
epistasis and dominance (never mind other sources of inter-
play and/or genetic complexity) are not present and/or impor-
tant. Are Visscher and Keller really prepared to disagree
with this?

Finally, Visscher and Keller pointed to recent successes
in demonstrating that, in addition to identifying many genes
that contribute to height but explain little of its variance, ad-
ditional common additive genetic variants in the aggregate
contribute as much as half the outstanding genetic variance
(Visscher, Yang, & Goddard, 2010; Yang et al., 2010). Pre-
suming this is correct and, as Visscher and Keller appear to
have implied, applicable to most behavioural traits, this indi-
cates that literally thousands of genes are likely involved in
each trait, with no single polymorphism having substantial
effect, which is the quasi‐infinite model to which Munafo
and Flint refer. Whatever would we as psychologists do with
such information?
CONCLUSION

Our target article was intended to provide background
knowledge to psychologists and other social scientists on
the subject of heritability. This statistic, in many ways
so basic, is both extremely powerful in revealing the pres-
ence of genetic influence and very weak in providing
much information beyond this. Many forms of measure-
ment error, statistical artefact, violation of underlying
assumptions, gene–environment interplay, epigenetic
mechanisms and no doubt processes we have not yet even
identified can contribute to the magnitudes of heritability
estimates. If psychologists and other social scientists want
to understand genetic involvement in behavioural traits, we be-
lieve that it is going to be necessary to distinguish among these
possibilities to at least some degree. Heritability estimates
alone are not going to help us do this.
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