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Abstract 

Objective: The present study investigates associations between brain white matter tract 

integrity, and cognitive abilities in community-dwelling older people (N=655). We explore 

two potential confounds of white matter tract-cognition associations in later life: 1) whether 

the associations between tracts and specific cognitive abilities are accounted for by general 

cognitive ability (g); and 2) how the presence of atrophy and white matter lesions affect these 

associations. 

Method: Tract integrity was determined using quantitative diffusion MRI tractography (tract-

averaged fractional anisotropy, FA). Using confirmatory factor analysis, we compared 1
st
-

Order and bi-factor models to investigate whether specific tract-ability associations were 

accounted for by g. 

Results: Significant associations were found between g and FA in bilateral anterior thalamic 

radiations (r=0.16 to 0.18, p<0.01), uncinate (r=0.19 to 0.26, p<0.001) and arcuate fasciculi 

(r=0.11 to 0.12, p<0.05), and the splenium of corpus callosum (r=0.14, p<0.01). After 

controlling for g within the bi-factor model, some significant specific cognitive domain 

associations remained. Results also suggested that the primary effects of controlling for 

whole brain integrity were on g associations, not specific abilities. 

Conclusions: Results suggest that g accounts for most of, but not all, the tract-cognition 

associations in the current data. When controlling for age-related overall brain structural 

changes, only minor attenuations of the tract-cognition associations were found and these 

were primarily with g. In totality, the results highlight the importance of controlling for g 

when investigating associations between cognitive specific abilities and neuropsychology 

variables. 

 

Key Words: Cognitive ability; tractography; white matter integrity; bi-factor model. 
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Introduction 

Cognitive ability is associated with many important life outcomes. Recent research suggests 

communicative white matter pathways are an important aspect of its neurostructural 

foundation (Deary, Penke and Johnson, 2010). The retention of cognitive functioning is of 

particular importance to successful ageing (Deary et al., 2009); with a growing body of 

research exploring the associations between cognitive ability and measures of white matter 

integrity in the brain (see Madden et al. 2012 for a recent review).  

Diffusion tensor MRI (DTI) is a widely used technique for studying brain 

connectivity (Sullivan and Pfefferbaum, 2006), providing biomarkers of white matter 

integrity, in particular fractional anisotropy (FA) which measures the directional coherence of 

water molecule diffusion. In normal ageing, FA shows a gradual mean decrease, indicative of 

decreasing white matter tract integrity (Wozniak and Lim, 2006). Here we focus on studies 

which have utilised DTI tractography as this method is applied in the current study (see 

Methods). 

DTI tractography studies of associations between white matter tract integrity and 

cognitive ability in older people have provided inconsistent findings (Madden et al., 2012). 

Higher FA in the genu of corpus callosum has been associated with working memory (Davis 

et al., 2009; Zahr, et al., 2009; Voineskos et al., 2012), while significant associations have 

been found between integrity of the right uncinate fasciculus and spatial working memory 

(Davis et al., 2009), and the left cingulum and performance on verbal paired associates (a test 

of verbal declarative memory) and executive function (Davis et al., 2009; Sasson et al., 

2011). Penke et al. (2012), using a subsample of the participants from the current study 

(n=420), found that general factors of white matter integrity derived from three brain imaging 

biomarkers (FA, longitudinal relaxation time (T1) and magnetisation transfer ratio) 

significantly predicted general intelligence, and that this prediction was fully mediated by 
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processing speed. Though Penke et al. (2012) provided strong support for the associations 

between white matter tract integrity and cognitive ability, specific tract associations were not 

considered. 

Inconsistency in associations between white matter tracts and cognitive abilities make 

it difficult to provide substantive theoretical explanations for the associations. For example, 

the Parieto-Frontal Integration Theory (P-FIT) has been proposed as an integrative 

framework for understanding the associations between the brain and intelligence (Jung and 

Haier, 2007). P-FIT suggests that the arcuate fasciculus, which forms part of the superior 

longitudinal fasciculus, may be particularly important in understanding tract-cognitive ability 

associations (Jung and Haier, 2007; Colom et al., 2009; Turken et al., 2008). However, as can 

be seen from the above brief review of studies in ageing samples, the arcuate fasciculus has 

not been consistently associated with cognitive ability.  

In the current study, we explore two possible methodological reasons for the 

inconsistent findings in ageing samples. First, the studies documented above assess both 

general and specific (e.g. verbal, spatial, memory) cognitive abilities. From such studies, it is 

not clear the extent to which correlations between white matter tract integrity and specific 

cognitive abilities are accounted for by general cognitive ability. This is of interest since each 

cognitive test score will comprise a proportion of variance which is attributable to specific 

ability, a proportion which is attributable to general ability, as well as a proportion of error 

variance (see Deary, et al., 2010 for discussion in the context of neuroscience). The 

importance of partitioning this variance in neuroimaging studies of cognitive ability has been 

previously noted by a number of authors (e.g. Colom & Thompson, 2011; see also Chen, 

West & Sousa, 2006 for a more general discussion), but no studies to date have been able to 

do so using highly robust methods. 
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Figures 1 and 2 graphically depict how test score variance is decomposed based on 

the methods applied to study the associations of cognitive ability and neuroimaging 

measures. Figure 1 panel A depicts perhaps the most common situation, in which a single 

cognitive test score is associated with a neuroimaging measure (e.g. Davis et al., 2009; 

Sasson et al., 2009; Zahr et al., 2009). The test score comprises general ability variance, 

specific ability variance, and error variance. In such circumstances, it is not possible to know 

which aspect of score variance is driving the correlation with the external measure. It is also 

important to note that, if researchers choose to sum a number of standardized scores (z-

scores) from individual tests into a single composite, the same effect as is depicted in Figure 

1 panel A occurs, and variance cannot be separated. 

(Insert Figure 1 about here) 

In order to try and estimate the extent to which specific ability variance associates 

with neuroimaging measures, some authors (e.g. Colom et al., 2009; Haier et al., 2009; Tang 

et al., 2010), regress a general cognitive ability score (e.g. a sum score or factor score), on 

individual test scores, and associate the resultant residual with neuroimaging measures 

(Figure 1, panel B). Although such methods partial out general ability variance, the residual 

term still consists of both specific ability and error variance, thus the association remains 

muddied. 

Both situations described above are based on analyses of single variables, be they 

individual test scores or summed composites. In recent years, it has become increasingly 

common to apply exploratory and confirmatory factor analytic methods (EFA and CFA), and 

the more general structural equation modelling (SEM) framework to investigate associations 

between cognitive ability and neuroimaging measures (see Kievet et al., 2012; and Penke and 

Deary, 2010, for discussions). In SEM, a measurement model is specified in which multiple 

cognitive tests are used to estimate latent cognitive ability factors based on the common 
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variance across test scores. Simultaneously, the estimated latent factors can be associated 

with the neuroimaging measures of interest. A primary advantage of SEM approaches is that 

latent variables are error free (Bollen, 1989), as they are estimated from only common 

variance between tests. Error variance is explicitly modelled in SEM as a residual term on 

observed variables (test scores). 

SEM is, therefore, highly useful in accounting for one source of variance, error 

variance, which may confound associations between cognitive and neuroimaging measures. 

However, some specifications of measurement models fail to separate general cognitive 

ability variance from specific ability variance. For example, in a 1
st
 -order factor model 

(Figure 2, Panel A), common variance associated with both the specific ability and general 

cognitive ability is conflated in the latent variable. Once again, it is not clear whether the 

association with neuroimaging variables is driven by general or specific abilities. Figure 2 

panel A depicts only a single latent variable; however, the above statement remains true when 

multiple 1
st
 -order latent variables are modelled. 

(Insert Figure 2 about here) 

A possible solution to this problem is the application of bi-factor models. Bi-factor 

modelling has been advocated as the best method for simultaneously measuring both specific 

and general cognitive abilities (Gignac, 2008; Schmiedek and Li, 2004; Brunner, In Press; 

for technical details on the estimation of bi-factor models see Reise, Moore & Haviland, 

2010; Yung, Thissen & McLeod, 1999). Figure 2 panel B depicts the decomposition of test 

score variance within a bi-factor model. Here, a latent general cognitive ability factor is 

estimated based on all test scores, whilst specific ability latent factors are estimated from a 

subset of test scores hypothesized to measure a specific ability. In Figure 2 panel B for 

example, tests 1 to 3 may be arithmetic tests, whereas tests 4 and 5 may be verbal tests. Thus, 

bi-factor modelling provides a framework within which test score variance can be 
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decomposed into its constituent parts, which can then be associated with external variables. 

To the authors’ knowledge, no studies of white matter tract integrity have applied a bi-factor 

modelling approach. 

 In the current study we seek to compare the results of 1
st
 -order and bi-factor models 

within the SEM framework, in order to help understand the extent to which brain white 

matter tract associations with specific cognitive abilities are caused by cognitive variation 

unique to that ability or general cognitive ability. The reliable identification of specific and 

general cognitive ability factors, and their associations with neuroimaging biomarkers, may 

be of particular importance in ageing samples (Schmiedek and Li, 2004), given that specific 

abilities such as processing speed, memory, reasoning and spatial skills start to decline much 

earlier than experience-based specific abilities such as vocabulary and knowledge (Salthouse, 

2011).  

A second potential methodological issue the current study seeks to explore is to what 

extent are any cognitive associations with specific white matter tracts owed to more general 

aspects of age-related brain degeneration. In general, the ageing brain displays both grey and 

white matter atrophy, and white matter lesions (Anderton, 2002) as well as accumulating 

microstructural changes that are not sufficient to show as overt lesions on conventional 

imaging. These features of the ageing brain have been suggested to cause disconnections in 

cognitive networks (Bullmore and Sporns, 2009), and to be predictive of cognitive ability in 

later life (Deary et al., 2003). Here we investigate whether these general aspects of brain 

integrity impact upon tract-cognitive ability associations, and whether these attenuations are 

stronger for general or specific cognitive abilities. 

Methodology 

Participants 
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Participants were drawn from the Lothian Birth Cohort 1936 (LBC1936), a longitudinal study 

of cognitive ageing. Most of the participants took part in the Scottish Mental Survey 1947 

(SMS1947) at about age 11 years, and were resident in Edinburgh and its surrounding area 

(the Lothians) at recruitment to Wave 1 of the study at about age 70 years. Protocols for 

recruitment, testing and brain MRI are reported in detail elsewhere (Deary et al., 2007; Deary 

et al., 2011; Wardlaw et al., 2011). 

From the original 1091 participants in Wave 1 (mean age = 69.5 years, s.d = 0.8), 866 

participants returned in Wave 2 (mean age = 72.5 years, s.d = 0.7), of which 700 provided 

some usable data from structural and diffusion MRI. In the present study, a cut-off of 25% 

was applied for missing data, which resulted in 39 subjects being removed for missing MRI 

data, and one for missing cognitive ability data. Further, subjects were removed from analysis 

if they scored below 24 on the Mini Mental State Exam (Folstein et al., 1975), as this is often 

considered an indicator of possible pathological cognitive impairment. Five subjects were 

removed based on this criterion. A total sample of 655 was used in the current study. 

Ethical Approval 

Ethical permission for the LBC1936 study protocol was obtained from the Multi-

Centre Research Ethics Committee for Scotland and the Lothian Research Ethics Committee. 

All research was carried out in compliance with the Helsinki Declaration. 

Cognitive Ability Measures 

The current analyses used 18 cognitive ability subtest scores. Full details of the cognitive 

tests have been published previously (Deary, et al. 2007; also Supplementary Material A).  

Briefly, we used seven subtest scores from the Wechsler Memory Scale III (WMS-

III
UK

: Wechsler, 1998a; Logical Memory Immediate and Delayed recall, Verbal Paired 

Associates Immediate and Delayed recall, Digit Span Backward, and Spatial Span forward 

and backward); five subtests from the Wechsler Adult Intelligence Scale III (WAIS-III
UK

: 
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Wechsler, 1998b; Block Design, Matrix Reasoning, Digit Symbol Coding, Symbol Search, 

Letter-Number Sequencing); the National Adult Reading Test (NART: Nelson and Wilson, 

1991), the Wechsler Test of Adult Reading (WTAR: Holdnack, 2001), verbal fluency (Lezak, 

2004), an inspection time task of visual information processing (Deary et al., 2004), and 

simple and 4-choice reaction time tasks (Deary, Der and Ford, 2001).  

Image Acquisition 

Full details of the image acquisition can be found in Wardlaw et al. (2011). In brief, 

participants underwent whole brain structural and high angular resolution 2 mm isotropic 

voxel diffusion MRI (7 T2- and 64 diffusion-weighted (b = 1000 s/mm2) axial single-shot 

spin-echo echo-planar imaging volumes) on a GE Signa Horizon HDxt 1.5T clinical scanner 

(General Electric, Milwaukee, USA) using a shelf-shielding gradient set (maximum gradient 

33 mT/m), and an 8-channel phased-array head coil. The structural MRI included T2-, T2*- 

and FLAIR-weighted scans, and a high resolution T1-weighted volume scan. 

Tract segmentation 

The diffusion MRI data were preprocessed using FSL tools (FMRIB, Oxford, UK; 

http://www.fmrib.ox.ac.uk) to extract the brain, remove bulk patient motion and eddy current 

induced artefacts, and generate parametric maps of FA. Underlying connectivity data were 

generated using BedpostX/ProbTrackX with the default settings of a two-fibre model per 

voxel, and 5000 probabilistic streamlines with a fixed separation of 0.5 mm between 

successive points (Behrens et al., 2007). 

 Twelve tracts of interest were identified using probabilistic neighbourhood 

tractography, a novel approach for automatic and reproducible tract segmentation (Clayden, 

Storkey and Bastin, 2007), as implemented in the TractoR package for fibre tracking analysis 

(Clayden et al., 2011; http://www.tractor-mri.org.uk). Briefly, this method works by 

segmenting the same fasciculus-of-interest across a group of subjects from single seed point 

http://www.fmrib.ox.ac.uk/
http://www.tractor-mri.org.uk/
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tractography output by modelling how individual tracts compare to a predefined reference 

tract in terms of their length and shape (Clayden et al., 2007). In practice, multiple native 

space seed points are placed in a cubic neighbourhood of voxels (typically 7  7  7) 

surrounding a seed point transferred from the centre of the reference tract, which is defined in 

standard space, with the tract that best matches the reference chosen from this group of 

‘candidate tracts’. Tracts assessed were the genu and splenium of corpus callosum, and 

bilateral anterior thalamic radiations, rostral cingulum bundles, arcuate, uncinate and inferior 

longitudinal fasciculi. Tract masks generated by probabilistic neighbourhood tractography 

were overlaid on the FA parametric maps and tract-averaged values of these biomarkers, 

weighted by the connection probability, determined for each tract in every subject. 

  To ensure that the segmented tracts were anatomically plausible representations of the 

fasciculi of interest, a researcher (SMM) visually inspected all masks blind to the other study 

variables and excluded tracts with aberrant or truncated pathways. In general, probabilistic 

neighbourhood tractography was able to segment the 12 tracts of interest reliably (See 

Clayden et al, 2009) in the majority of subjects, with tracts that did not meet quality criteria, 

such as truncation or failing to follow the expected path, ranging from 0.3% for the splenium 

of corpus callosum to 16% for the left anterior thalamic radiation, with a mean of 5%. 

(Failures in tract segmentation are typically caused by underlying tractography errors in 

BedpostX/ProbTrackX resulting from finite image resolution, small registration mismatches 

in the component diffusion MRI volumes and measurement noise.) From the point of view of 

substantive investigations, the 12 tracts represent a good balance between projection, 

commissural and association fibres which connect a wide variety of brain regions. 

Structural MRI volumetric analysis 

Brain tissue volumes were measured blind to participant information using a validated 

multispectral segmentation tool, MCMxxxVI (Wardlaw et al., 2011; Valdés Hernández et al., 
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2010; http://sourceforge.net/projects/bric1936), from the co-registered structural MRI data. 

The tissue compartments measured were intracranial volume (ICV; all soft tissue structures 

inside the cranial cavity including brain, dura, cerebrospinal fluid (CSF) and venous sinuses); 

total brain tissue volume (brain tissue volume without the superficial or ventricular CSF); 

CSF (all CSF inside the cranial cavity including the ventricles and superficial subarachnoid 

space); and white matter lesion volumes. Since MCMxxxVI does not distinguish 

hyperintense and hypointense areas of cerebromalacea due to old cortical/subcortical infarcts 

or lacunes from white matter lesions and CSF respectively, these areas were masked out from 

the respective binary masks by thresholding the FLAIR sequence using a region-growing 

algorithm from Analyze 10.0 (http://www.analyzedirect.com/Analyze). Where stroke lesions 

were confluent with white matter lesions, the boundary between the two was determined by 

comparison with the contralateral hemisphere and neuroradiological knowledge. 

Visual white matter lesion rating 

White matter lesion burden was also rated from T2- and FLAIR-weighted sequences using 

the Fazekas scale by an expert neuroradiologist. Lesions were coded depending on whether 

they were located in subcortical or periventricular white matter and the individual scores 

summed to give an overall lesion rating (Wardlaw et al., 2011). 

Statistical Analysis  

We performed two primary analyses. Firstly, associations between tract integrity and specific 

cognitive abilities were compared, with and without controlling for g, using 1
st
-order and 

confirmatory bi-factor models. In the second, we considered whether atrophy and white 

matter lesion load, the latter assessed using both volume measurements and visual rating 

scores, accounted for the associations between tract integrity and cognitive ability. The input 

data for all models were standardized residuals after regressing age, sex and handedness on 

tract integrity measures, and age in days and sex on each cognitive test. 

http://sourceforge.net/projects/bric1936
http://www.analyzedirect.com/Analyze
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1st-Order versus Bi-factor Models 

In the first set of analyses, EFA was initially applied to identify the appropriate number of 

first-order cognitive ability factors (cognitive abilities) from our battery of 18 tests. Next, 

confirmatory factor analysis was used to estimate both 1
st
-order and bi-factor structural 

models for the cognitive tests, based on the results of the exploratory analysis. Here, a 1
st
-

order model is defined as containing only specific cognitive abilities as factors. The bi-factor 

model contains both a general cognitive ability factor and specific cognitive ability factors. 

Structural equation models were estimated in which FA from each of the 12 segmented tracts 

was correlated with the cognitive ability factors in both models. 

Exploratory Factor Analysis: EFA was conducted using maximum likelihood 

estimation and oblique Equamax rotation. The number of factors to extract was determined 

using parallel analysis (PA:Horn, 1965) and Minimum Average Partial (MAP:Velicer, 1976), 

using the ‘psych’ package in R.2.13.2 (Revelle, 2011; http://www.r-project.org).  

  Confirmatory Factor Models: The exploratory factor solution was tested in both 1
st
-

Order (Figure 3) and bi-factor (Figure 4) models. In the 1
st
-order model, specific cognitive 

abilities are modelled by factor loadings on specific subtest scores. The specific cognitive 

ability factors are allowed to correlate, but no general cognitive factor is included. In the bi-

factor model, each specific subtest score is loaded on both its specific factor, and a general 

cognitive ability factor, thereby accounting for the variance in performance on that test which 

is general, not due to specific cognitive factors.  

In both the 1
st
-order and bi-factor models, a number of correlated residuals were 

included. In a confirmatory factor model, residuals contain the proportion of variance not 

accounted for by the latent construct, namely unique and error variance. The battery of 

cognitive tests used in the current study includes subtests for which two scores have been 

retained, e.g., immediate and delayed recall on Verbal Paired Associates. Such scores will 

http://www.r-project.org/
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share test-specific variance which would not be expected to be explained by the latent 

construct. See Results for full details of the residual correlations included. 

Structural Equation Models: In the structural models, the 12 tract-averaged FA values 

were included and allowed to correlate with each cognitive ability factor. The tract-averaged 

FA values were allowed to correlate, following the empirical findings of a general integrity 

factor using a subsample of the LBC1936 data (Penke et al., 2012). 

Covarying for total brain atrophy and white matter lesion load. 

In the second set of analyses, the 1
st
-order and bi-factor models were re-estimated including 

total white matter lesion rating score (Fazekas), white matter lesion volume as a percentage 

of ICV, and brain atrophy (calculated as: Atrophy = (1 – (Total Brain Tissue 

Volume/ICV))*100)as covariates in the model. The aim of the second analysis was to ask 

whether specific white matter tract- cognitive ability associations were attenuated by 

controlling for more general measures of brain integrity. 

Structural Equation Model Estimation and Evaluation 

All models were estimated using Full Information Maximum Likelihood (FIML) estimation 

in Mplus 6.0 (Muthen and Muthen, 2010). FIML was used because the present study’s data 

set contained a small proportion of missing data (see Results for details). FIML is considered 

to be one of the most robust missing data techniques (Enders and Bandalos, 2001).  

Model fit was evaluated based on recommendations from the Monte Carlo simulation 

studies of Hu and Bentler (1998, 1999), and a review by Schermelleh-Engel, Moosbrugger, 

and Muller (2003). We adopted cut-off points of ≤0.05 for the standardised root mean square 

residual (SRMR), ≤0.06 for the root mean square error of approximation (RMSEA), and 

≥0.95 for the Tucker-Lewis Index (TLI) and Comparative Fit Index (CFI). If a model 

displays appropriate levels of fit, it is considered to be a good representation of the data and 

the researcher can consider substantive interpretations of parameter estimates. 
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Results 

Descriptive Statistics  

Descriptive statistics for the cognitive test results, tract-averaged FA values and covariates 

are presented in Table 1. The greatest proportion of variance missing from any individual 

variable is 16.0 % (n=105) for the left anterior thalamic radiation. Across all variables, the 

proportion of missing data was low. Simple Reaction Time and Inspection Time Total score 

displayed the greatest levels of skew or kurtosis (4.09 and 3.82 respectively). However, on 

inspection of the histograms, these deviations from normality were considered small. All 

other variables displayed close to normal distributions. 

(Insert Table 1 about here) 

1st-Order versus Bi-factor 

Results of MAP analysis suggested that 2 factors should be retained from the analysis of the 

18 cognitive tests, whereas PA suggested 7 factors should be retained. All factor solutions 

with between 2 and 7 factors were considered. The 7, 6 and 5-factor solutions all contained 

under-identified factors (fewer than 3 indicators), and/or Heywood cases (implausible 

loadings > 1.00). Therefore, these solutions were rejected. The 4-factor solution (see 

Supplementary Material Table B1) was retained as it represented the most psychologically-

interpretable solution retaining the greatest number of specific cognitive factors. The four 

factor solution also remained stable across different forms (Geomin, FC-Parsimax and 

Oblimin) of oblique rotations. Factor consistency across rotational methods is generally 

considered as a marker of a robust solution (Sass and Schmitt, 2010). The four factors were 

labelled Knowledge, Verbal Declarative Memory, Processing Speed, and Non-Verbal 

Reasoning. 

 Next, we tested the EFA solution as a 1
st
-order confirmatory factor analytic (CFA) 

model (Figure 3) and a bi-factor CFA model (Figure 4). Across both models, three correlated 
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residuals were included between Logical Memory Immediate and Delayed Recall, Simple 

and Choice Reaction Time, and Digit Span Backward and Letter-Number Sequencing. 

Though the inclusion of a greater number of correlated residuals would have improved model 

fit, it also would have resulted in identification problems in the bi-factor model. 

 Both 1
st
-order (Figure 3) and bi-factor (Figure 4) confirmatory models showed 

acceptable to excellent levels of fit across all indices. The specific cognitive ability factors in 

the first 1
st
-order model correlated significantly and positively (0.43 to 0.76; mean = 0.56). 

(Insert Figure 3 about here) 

 In the bi-factor model, retaining all correlated residuals from the previous model 

(Figure 4), the factor loadings of each subtest on g were generally moderate to large (>0.40), 

with the exception of Simple Reaction Time (-0.27), Spatial Span Forward (0.32) and 

Backward (0.38), and Inspection Time (0.38). The average general factor loading was 0.51.  

(Insert Figure 4 about here) 

 Table 2 presents the results when all 12 tract-averaged FA measurements are included 

in each of the models. In the discussion that follows we focus on the raw associations. Given 

the current sample size, a significance level of p<0.05 and 80% power, the current study is 

powered to identify associations of approximately ±0.11 and greater. Further, applying a 

Bonferroni correction to the 1
st
-order and bi-factor models resulted in corrected p-values of 

0.0011 and 0.0008 respectively. As a result, we consider all associations significant to 

p<0.001 to be robust to multiple comparisons, and values at p<0.01 to be highly indicative 

given the conservative nature of Bonferroni corrections. 

In the 1
st
-order factor model (Figure 3), which contains only specific cognitive 

abilities, a large number of significant tract associations are found between posterior-frontal 

tracts, especially with Processing Speed and Non-Verbal Reasoning (Table 2). A number of 
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smaller significant associations (<0.11) are also seen, again in posterior-frontal tracts, with 

Knowledge and Verbal Declarative Memory.  

In the bi-factor model (Figure 4), in which g is controlled for, most of the significant 

associations with specific cognitive ability factors are markedly attenuated, and become non-

significant (Table 2). These results suggest that, in the current battery of tests, the 

associations between specific factors of cognitive ability and white matter tract integrity are 

largely driven by g, and not by separable specific cognitive ability variance. 

(Insert Table 2 about here) 

 As can be seen in Table 2, the strongest associations with g are found for bilateral 

uncinate fasciculi (Left = 0.19; Right = 0.26; p<0.001) and anterior thalamic radiations (Left 

= 0.16, p<0.01; Right = 0.19, p<0.001). A small number of associations with specific 

cognitive abilities remain significant after controlling for g. In the bi-factor model, the right 

uncinate fasciculus is significantly associated with Knowledge (-0.16, p<0.01). The left 

inferior longitudinal fasciculus (0.16, p<0.001) and right anterior thalamic radiation (0.14, 

p<0.05) are both associated with Processing Speed. The right uncinate fasciculus (-0.14, 

p<0.05) is associated with Non-Verbal Reasoning. The left arcuate fasciculus (-0.10, p<0.05) 

is associated with Verbal Declarative Memory. 

Covarying for atrophy and white matter lesion load 

Next, we re-estimated both the 1
st
-order and bi-factor models using input data 

residualised for whole brain integrity variables (Table 2, columns 4 and 7 labelled Residuals). 

The results for the bi-factor model suggest most attenuation of associations were small, with 

all parameter changes at the second decimal place, and the greatest change in estimate being 

0.08. For a number of associations, particularly with g, this resulted in estimates becoming 

non-significant. However, the strongest associations between specific tracts and g across 
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models remained significant, namely the right anterior thalamic radiation (0.12, p<0.05), and 

the left (0.13, p<0.05) and right (0.22, p<0.001) uncinate fasciculus. 

Further, it is also of interest that the residual attenuations on specific ability 

associations are generally greater in the 1
st
-order model than in the bi-factor model. This 

suggest that much of the attenuation in tract-cognitive associations is attributable to g, as 

when this variance is separated in the bi-factor model, the greatest attenuations are seen in g, 

not specific factor associations.   

Discussion 

The results of the current study lead to three main conclusions. Firstly, we provide further 

evidence that failure to control for g when investigating the associations between specific 

cognitive abilities and neuroimaging biomarkers could result in misleading, spurious or 

inflated associations with the specific cognitive factors. Second, integrity in a large number 

of white matter tracts, primarily the uncinate fasciculus and anterior thalamic radiation, were 

associated with general cognitive ability, g, in our ageing sample. However, a small number 

of associations with specific tracts remained, suggesting further robust analyses of specific 

associations would be beneficial. Thirdly, the results suggest that, despite loss of brain 

structural integrity, i.e., increased atrophy and white matter lesion load, associations between 

white matter tract integrity and cognitive ability are independent of these general indicators 

of brain structural decline.  

In the current sample, higher general cognitive ability was significantly associated 

with greater white matter tract integrity in both right and left uncinate fasciculi and anterior 

thalamic radiations. In the limited research published to date on individual tract-cognitive 

ability associations in ageing samples, neither of these two tracts has commonly been 

associated with g. However, Zahr et al. (2009) found significant age effects for the uncinate 
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fasciculus when comparing small samples of young (mean age 25.5 years; n=12) and older 

(mean age 77.7 years; n=12) participants.  

 Across all individual tracts, the right uncinate fasciculus showed the greatest number 

of significant associations with both specific and general cognitive ability, supporting 

previous findings in younger samples (Yu et al., 2008). The right uncinate fasciculus is larger 

than the left leading some to suggest greater connectivity and information flow between the 

right fronto-temporal regions it connects (Highley et al. 2002). The number of significant 

associations found in the current study may therefore be a reflection of the greater 

connectivity of the right uncinate fasciculus. 

 Outside of the associations with g, the strongest bilateral association between any 

tract and cognitive ability was seen for the inferior longitudinal fasciculus and processing 

speed. This in part confirms prior findings of Davis et al. (2009), yet there remains much 

uncertainty as to the functional role of the inferior longitudinal fasciculus (Ashtari, 2012). 

Clearly the current finding of a specific association requires replication, but the large sample 

and association after controlling for general cognitive ability suggest that further studies on 

speed of processing may be fruitful. 

 The importance of estimating specific cognitive abilities, controlling for g, was 

demonstrated in comparing the results from the 1
st
-order and bi-factor models. In the 1

st
-order 

model, a large number of the significant associations were found for processing speed and 

non-verbal reasoning, but were attenuated and became non-significant when g was controlled 

for in the estimation of specific ability factors using a bi-factor model. Clearly the 

associations of the specific abilities with white matter tract integrity were driven, at least in 

part, by the variance in test scores associated with general cognitive ability, not specific 

abilities.  
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The current study demonstrates the utility of bi-factor modelling in ageing samples 

(Brunner, In Press; Schmiedek and Li, 2004), to control for general cognitive ability in the 

associations between narrow level specific abilities and neuroimaging variables (Colom and 

Thompson, 2011; Gignac, 2008; Chen, Sousa and West, 2006). This is an important 

extension to past studies which have generally taken one of two approaches to controlling for 

g, either regressing out a sum score for g from sum scores for specific abilities (e.g. Colom et 

al., 2009), or by using a hierarchical factor analytic procedure, such as the Schmid-Lieman 

transformation, to extract factor scores for both g and specific abilities (e.g. Glascher et al., 

2010). The bi-factor approach has a number of distinct advantages, most notably the ability to 

simultaneously estimate associations between criterion variables and specific and general 

cognitive ability factors, and the robust nature of the estimates based on latent constructs free 

from measurement error. Further, the bi-factor models has a number of methodological 

advantages such as being free from the proportionality constraints present in higher-order 

models and methods such as the Schmid-Lieman transformation (Schmiedek and Li, 2004).       

Our findings are in conformity with previous suggestions from the literature (e.g. 

Colom and Thompson, 2011), and may go some way to explaining the variability of tract-

cognitive ability associations found across studies. Commonly in neuroimaging studies of 

cognitive ability, researchers use single sub-tests or small batteries of sub-tests either to 

measure g, or to measure specific abilities. These batteries are often sum scored, and not 

measured as latent constructs using SEM (see Figure 1). When single tests are measured, it is 

not possible to determine the extent to which associations are driven by g, or specific 

abilities, as any individual tests vary in the level to which they measure g and specific 

abilities (Major, Johnson and Bouchard, 2011). Thus, in any individual study, it may not be 

immediately apparent exactly what cognitive ability factor is being measured, and how much 

effect g, when not explicitly measured, is exerting on the associations found. If researchers 
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are interested in associations of specific abilities and external constructs, we recommend 

gathering data on multiple sub-tests.  

 Consideration of the results of the models controlling for whole brain integrity (global 

atrophy and white matter lesion load) further emphasizes the importance of controlling for g. 

In the 1
st
-order model, attenuation in associations between tracts and specific cognitive ability 

factors was present for all specific ability factors, suggesting whole brain integrity is 

significantly associated with each of these factors. However, when controlling for g in the bi-

factor model, especially in the case of Verbal Declarative Memory, Processing Speed, and 

Fluid Ability, the attenuations became much smaller, and the larger effects were seen in the g 

associations with specific tracts, suggesting that whole brain integrity more strongly 

influences g, not specific abilities. 

There are a number of limitations to the current study. Firstly, the specific cognitive 

ability factors within the bi-factor model were identified by a limited number of individual 

test scores. In an ideal case, more individual tests would have been included in the battery to 

ensure over identification of these factors. Secondly, a number of studies (e.g. Haier et al., 

2005; Tang et al., 2010) have suggested sex differences in tract-cognitive ability associations. 

In the current study, we chose not to investigate sex differences, and to control for variance in 

tests due to sex. Future research may consider if the patterns of association found here are 

consistent across the sexes. Thirdly, the observed lack of attenuation of the tract cognition 

associations by whole brain integrity variables, may result from the measure of global 

atrophy being relatively insensitive to ageing related white matter damage which typically 

affects subcortical structures and leads to ventricular enlargement. Finally, the present cohort 

was relatively healthy and the results should not be taken to represent advanced stages of 

ageing related brain atrophy or white matter lesions.  
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However, the current study also has a number of major strengths. Firstly, the 

availability of a large sample from a narrow range age cohort eliminates many of the 

potential confounds of age in cross-sectional studies. Secondly, by applying probabilistic 

neighbourhood tractography, we were able to segment a large number of major white matter 

tracts, and measure tract-averaged FA in these pathways both reliably and automatically. 

Thirdly, we extend the previous work of Penke et al. (2012) by focussing on specific tract 

associations using a larger sample. Forth, we used both visual and computational measures of 

white matter lesion load as they provide different, but complementary, information on disease 

burden. Finally, we applied a broad battery of psychometric tests which, in part due to our 

large sample size, allowed us to model latent cognitive ability factors within a structural 

equation model framework. The current study is, to the authors’ knowledge, the only study to 

combine bi-factor modelling of general and specific cognitive abilities with tractography 

estimates of tract integrity. Collectively, we provide highly robust estimates of tract-cognitive 

ability associations.  

In summary, the current study reports associations between white matter tract 

integrity and cognitive abilities in a large, age-homogeneous sample of relatively healthy 

older people. It finds that the associations of specific cognitive abilities with external 

variables may be biased if researchers fail to account for g; that is, significant associations 

may not be due to a specific, but general cognitive ability. However, once variance associated 

with g was controlled for, a number of specific ability –specific tract associations remained. 

Importantly, this finding suggests the potential fruitfulness of further research based on 

robust methodologies in the investigation of specific cognitive abilities. Lastly, the results 

demonstrate that, in the current sample, controlling for atrophy and white matter lesion load 

does not alter tract-cognitive ability associations. 
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Figure Captions 

Figure 1: Diagrammatic representations of variance decomposition in two methods for 

estimating the association between cognitive ability and neuroimaging variables. Panel A 

depicts a simple correlation between an individual cognitive test or sum score. Panel B 

depicts controlling for a total g or IQ score on a single test or sum score. Rectangles = 

observed variables; Circles = latent or residual variables; Single headed arrows = direct paths; 

Double headed arrows = correlations; WM FA = white matter fractional anisoptropy; gv = 

general cognitive ability variance; sv = specific cognitive ability variance; ev= error variance. 

 

Figure 2: Diagrammatic representations of variance decomposition in two structural equation 

models for estimating the association between cognitive ability and neuroimaging variables. 

Panel A depicts a 1
st
 –order factor model. Panel B depicts a bi-factor model, including 

separate general and specific ability latent factors. Rectangles = observed variables; Circles = 

latent or residual variables; Single headed arrows = direct paths; Double headed arrows = 

correlations; WM FA = white matter fractional anisotropy; gv = general cognitive ability 

variance; sv = specific cognitive ability variance; ev= error variance. 

 

Figure 3: Measurement model for the 1
st
 -order model. VDM = Verbal Declarative Memory. 

Model Fit: χ
2
 = 417.99(126), p<0.001; CFI = 0.95; TLI = 0.93; RMSEA = 0.059 (95% Conf. 

0.053 to 0.066); SRMR = 0.058. 

 

Figure 4: Measurement model for the bi-factor model. VDM = Verbal Declarative Memory. 

Model Fit: χ
2
 = 315.68(114), p<0.001; CFI = 0.96; TLI = 0.95; RMSEA = 0.052 (95% Conf. 

0.045 to 0.059); SRMR = 0.044. 
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Table 1: Descriptive statistics of cognitive ability tests, tractography FA measures and 

covariates. 

Variable No. 
Missing 

Mean SD Skew Kurtosis 

Cognitive Ability      
Logical Memory Immediate Recall WMS-III 1 45.88 10.18 -0.48 0.30 
Logical Memory Delayed Recall WMS-III 1 28.89 8.08 -0.56 0.26 
Verbal Paired Associates 1

st
 Recall WMS-III 12 2.80 2.30 0.62 -0.66 

Verbal Paired Associates 2
nd

 Recall WMS-III 15 6.39 2.09 -1.26 0.57 
Spatial Span Forward WMS-III 1 7.66 1.65 -0.09 -0.39 
Spatial Span Backward WMS-III 2 7.08 1.60 -0.06 -0.10 
Verbal Fluency Total Score 1 43.47 12.68 0.23 0.14 
National Adult Reading Test 1 34.57 7.86 -0.54 -0.10 
Wechsler Test of Adult Reading 1 41.26 6.70 -0.93 0.61 
Simple Reaction Time Mean Score 0 0.27 0.05 1.66 4.09 
Choice reaction Time Mean Score 0 0.65 0.08 0.89 1.77 
Inspection Time Total Correct Responses 11 111.45 11.64 -1.16 3.82 
Digit Symbol WAIS-III

UK 1 56.43 12.22 0.11 -0.20 
Digit Span Backward WAIS-III

UK 0 7.90 2.30 0.28 -0.20 
Block Design WAIS-III

UK 2 34.26 9.98 0.47 0.13 
Letter-Number Sequencing WAIS-III

UK 0 11.01 2.99 0.28 0.41 
Matrix Reasoning WAIS-III

UK 1 13.46 4.86 -0.10 -0.93 
Symbol Search WAIS-III

UK 
1 24.74 6.09 -0.32 0.78 

      
FA Tractography      
Genu of corpus callosum 17 0.41 0.05 -0.07 -0.12 
Splenium of corpus callosum 4 0.49 0.07 -0.30 0.61 
Left Arcuate Fasciculus 27 0.45 0.04 -0.42 0.50 
Right Arcuate Fasciculus 87 0.43 0.04 -0.29 0.72 
Left Anterior Thalamic Radiation 105 0.32 0.03 -0.10 0.25 
Right Anterior Thalamic Radiation 20 0.33 0.03 -0.31 0.54 
Left Rostral Cingulum  23 0.44 0.05 -0.53 0.76 
Right Rostral Cingulum 13 0.39 0.04 -0.61 1.84 
Left Uncinate fasciculus 93 0.33 0.03 -0.13 0.39 

Right Uncinate fasciculus 33 0.33 0.03 -0.25 0.47 

Left Inf. Longitudinal Fasciculus 4 0.40 0.05 -0.28 0.08 
Right Inf. Longitudinal Fasciculus 3 0.38 0.05 -0.40 0.18 
      

Covariates      
Age 0 72.6 0.70 -0.00 -0.87 
Atrophy (Percent Decline) 13 22.39 3.84 0.16 0.10 
White mater lesion volume in ICV (%) 13 0.83 0.91 2.52 10.24 
Fazekas Total Lesion Rating Score 6 2.45 1.14 0.83 0.83 
      

  Male Female   

Sex 0 345 310   

      

  Right Left Ambidextrous 

Handedness 0 614 38 3  
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Table 2: White matter tract integrity and cognitive ability correlations in the 1
st
-Order and bi-factor models. 

  Knowledge  

 1
st
-Order 95% CI Residual (Δ) Bi-F 95%CI Residual (Δ) 

Genu Corpus Callosum 0.01 -0.07 to 0.09 0.01 (0.00) -0.03 -0.13 to 0.08 0.00 (0.03) 

Splenium Corpus Callosum 0.08 0.00 to 0.16 0.06 (0.02) -0.03 -0.14 to 0.07 -0.03 (0.00) 

Left Arcuate fasciculus 0.02 -0.06 to 0.10 0.00 (0.02) -0.08 -0.18 to 0.02 -0.07 (0.01) 

Right Arcuate fasciculus 0.02 -0.06 to 0.11 0.01 (0.01) -0.06 -0.17 to 0.04 -0.06 (0.00) 

Left. Anterior Thalamic Radiation 0.09* 0.01 to 0.18 0.09* (0.00) -0.03 -0.14 to 0.08 0.00 (0.03) 

Right Anterior Thalamic Radiation 0.10* 0.02 to 0.18 0.08* (0.02) -0.04 -0.14 to 0.07 0.00 (0.04) 

Left Rostral Cingulum  0.05 -0.03 to 0.13 0.05 (0.00) -0.01 -0.12 to 0.09 0.01 (0.00) 

Right Rostral Cingulum 0.08* 0.00 to 0.16 0.07 (0.01) 0.03 -0.07 to 0.14 0.06 (0.03) 

Left Uncinate fasciculus 0.09* 0.01 to 0.17 0.08 (0.01) -0.05 -0.15 to 0.06 -0.02 (0.03) 

Right Uncinate fasciculus 0.08 0.00 to 0.16 0.08 (0.00) -0.16** -0.26 to -0.06 -0.14** (0.02) 

Left Inferior. Longitudinal Fasciculus 0.07 -0.01 to 0.15 0.05 (0.02) 0.03 -0.07 to 0.13 0.05 (0.02) 

Right Inferior Longitudinal Fasciculus 0.04 -0.04 to 0.11 0.02 (0.02) -0.01 -0.12 to 0.09 0.00 (0.01) 

       

  Verbal Declarative Memory  

 1
st
-Order 95% CI Residual (Δ) Bi-F 95%CI Residual (Δ) 

Genu Corpus Callosum 0.03 -0.06 to 0.12 -0.01 (0.04) 0.04 -0.05 to 0.13 0.04 (0.00) 

Splenium Corpus Callosum 0.10* 0.01 to 0.18 0.07 (0.03) -0.01 -0.10 to 0.08 -0.01 (0.00) 

L. Arcuate fasciculus 0.00 -0.09 to 0.09 -0.07 (0.07) -0.10* -0.19 to -0.01 -0.10* (0.00) 

R. Arcuate fasciculus 0.02 -0.07 to 0.12 -0.03 (0.05) -0.09 -0.18 to 0.00 -0.09 (0.00) 

L. Ant. Thalamic Radiation 0.05 -0.05 to 0.14 -0.01 (0.06) -0.06 -0.16 to 0.04 -0.06 (0.00) 

R. Ant. Thalamic Radiation 0.11* 0.02 to 0.20 0.07 (0.04) -0.02 -0.10 to 0.10 0.02 (0.04) 

L. Rostral Cingulum  0.01 -0.08 to 0.10 -0.03 (0.04) -0.07 -0.16 to 0.02 -0.07 (0.00) 

R. Rostral Cingulum 0.07 -0.02 to 0.16 0.04 (0.03) -0.07 -0.16 to 0.02 -0.07 (0.00) 

L. Uncinate fasciculus 0.11* 0.01 to 0.20 0.06 (0.05) 0.00 -0.09 to 0.10 0.01 (0.01) 

R. Uncinate fasciculus 0.11* 0.02 to 0.20 0.06 (0.05) -0.05 -0.14 to 0.05 -0.05 (0.00) 

L. Inf. Longitudinal Fasciculus 0.02 -0.07 to 0.10 -0.03 (0.05) -0.03 -0.12 to 0.06 -0.01 (0.02) 

R. Inf. Longitudinal Fasciculus 0.02 -0.07 to 0.11 -0.01 (0.03) -0.07 -0.16 to 0.02 -0.06 (0.01) 
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Table 2 cont.  Processing Speed  

 1
st
-Order 95% CI Residual (Δ) Bi-F 95%CI Residual (Δ) 

       

Genu Corpus Callosum 0.04 -0.05 to 0.13 -0.01 (0.05) 0.04 -0.08 to 0.17 0.02 (0.02) 

Splenium Corpus Callosum 0.13** 0.05 to 0.21 0.07 (0.06) 0.05 -0.08 to 0.17 0.01 (0.04) 

L. Arcuate fasciculus 0.15*** 0.07 to 0.24 0.05 (0.10) 0.10 -0.02 to 0.22 0.03 (0.07) 

R. Arcuate fasciculus 0.13** 0.04 to 0.22 0.04 (0.09) 0.07 -0.06 to 0.20 0.01 (0.06) 

L. Ant. Thalamic Radiation 0.16*** 0.07 to 0.25 0.06 (0.10) 0.07 -0.06 to 0.20 0.01 (0.06) 

R. Ant. Thalamic Radiation 0.23*** 0.15 to 0.31 0.15*** (0.08) 0.14* 0.01 to 0.26 0.10 (0.04) 

L. Rostral Cingulum  0.13** 0.05 to 0.22 0.08 (0.05) 0.09 -0.03 to 0.22 0.07 (0.02) 

R. Rostral Cingulum 0.08 -0.01 to 0.16 0.02 (0.06) 0.00 -0.12 to 0.13 -0.03 (0.03) 

L. Uncinate fasciculus 0.13** 0.04 to 0.22 0.03 (0.10) -0.02 -0.14 to 0.11 -0.08 (0.06) 

R. Uncinate fasciculus 0.13** 0.04 to 0.21 0.06 (0.07) -0.10 -0.23 to 0.02 -0.13* (0.03) 

L. Inf. Longitudinal Fasciculus 0.19*** 0.10 to 0.27 0.08 (0.11) 0.16** 0.04 to 0.28 0.08 (0.08) 

R. Inf. Longitudinal Fasciculus 0.15** 0.06 to 0.23 0.08 (0.07) 0.11 -0.02 to 0.23 0.06 (0.05) 

       

  Fluid Ability  

 1
st
-Order 95% CI Residual (Δ) Bi-F 95%CI Residual (Δ) 

       

Genu Corpus Callosum -0.01 -0.09 to 0.08 -0.05 (0.04) -0.08 -0.21 to 0.05 -0.08 (0.00) 

Splenium Corpus Callosum 0.09 0.00 to 0.17 0.04 (0.05) -0.12 -0.25 to 0.01 -0.13 (0.01) 

L. Arcuate fasciculus 0.07 -0.02 to 0.16 0.00 (0.07) -0.10 -0.23 to 0.02 -0.10 (0.00) 

R. Arcuate fasciculus 0.04 -0.05 to 0.14 -0.02 (0.06) -0.11 -0.25 to 0.02 -0.12 (0.01) 

L. Ant. Thalamic Radiation 0.12* 0.03 to 0.21 0.05 (0.07) -0.09 -0.23 to 0.05 -0.08 (0.01) 

R. Ant. Thalamic Radiation 0.19*** 0.10 to 0.27 0.14** (0.05) -0.03 -0.17 to 0.12 0.02 (0.05) 

L. Rostral Cingulum  0.09* 0.00 to 0.18 0.05 (0.04) -0.03 -0.16 to 0.10 -0.03 (0.00) 

R. Rostral Cingulum 0.10* 0.01 to 0.19 0.06 (0.04) -0.00 -0.13 to 0.13 0.01 (0.01) 

L. Uncinate fasciculus 0.16*** 0.07 to 0.25 0.10* (0.06) -0.05 -0.18 to 0.09 -0.04 (0.01) 

R. Uncinate fasciculus 0.18*** 0.09 to 0.26 0.13** (0.05) -0.14* -0.27 to-0.01 -0.13 (0.01) 

L. Inf. Longitudinal Fasciculus 0.15** 0.06 to 0.23 0.09 (0.06) 0.05 -0.07 to 0.18 0.07 (0.02) 

R. Inf. Longitudinal Fasciculus 0.11** 0.02 to 0.20 0.07 (0.04) 0.01 -0.13 to 0.16 0.04 (0.03) 
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Table 2 cont.  g  

 1
st
-Order

a 
95% CI Residual (Δ) Bi-F 95%CI Residual (Δ) 

Genu Corpus Callosum - - - 0.03 -0.07 to 0.13 -0.01 (0.04) 

Splenium Corpus Callosum - - - 0.14** 0.04 to 0.24 0.11 (0.03) 

L. Arcuate fasciculus - - - 0.12* 0.02 to 0.22 0.05 (0.07) 

R. Arcuate fasciculus - - - 0.11* 0.00 to 0.21  0.06 (0.05) 

L. Ant. Thalamic Radiation - - - 0.16** 0.06 to 0.27 0.09 (0.07) 

R. Ant. Thalamic Radiation - - - 0.19*** 0.09 to 0.29 0.12* (0.07) 

L. Rostral Cingulum  - - - 0.10 0.00 to 0.20 0.06 (0.04) 

R. Rostral Cingulum - - - 0.10 0.00 to 0.20 0.06 (0.04) 

L. Uncinate fasciculus - - - 0.19*** 0.09 to 0.29 0.13* (0.06) 

R. Uncinate fasciculus - - - 0.26*** 0.16 to 0.35 0.22*** (0.04) 

L. Inf. Longitudinal Fasciculus - - - 0.10* 0.00 to 0.20 0.03 (0.07) 

R. Inf. Longitudinal Fasciculus - - - 0.09 -0.01 to 0.20 0.04 (0.05) 

       

 

Note:  Bi-F = Bi-Factor; Residual = Correlations based on standardized residuals controlling for sex, age, handedness (tracts only), white matter 

lesion as a percentage of ICV, Fazekas ratings of white matter lesions, and atrophy; (Δ) = the difference between raw and residualized 

associations; 
a
The 1

st
 -order model contains no g associations as g is not included in this model. All estimates are standardized with confidence 

intervals presented in parentheses below. 

 p<0.05*; p<0.01**; p<0.001***. Values in in bold are significant after Bonferroni correction. 
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Figure 1: 

 

 

 

 

 

 

 

 

 



RUNNING HEAD: White matter tracts and cognitive abilities. 

 

36 

 

Figure 2 
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Figure 3 
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Figure 4 
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Supplementary Material A 

Further details of the cognitive ability tests used in the current analyses are provided below.  

1. Logical Memory (WMS-III
UK

) tests verbal declarative memory and provides 

immediate and delayed recall scores. Participants are asked to recall two 25 item 

stories which are read aloud by the examiner. Immediate (3 recalls total possible score 

75) and delayed (2 recalls total possible score 50) scores were used. 

2. Verbal Paired Associates (WMS-III
UK

) tests learning and memory. Participants are 

read lists of unrelated word pairs and are asked to recall the second of the pair when 

given the first. Immediate and delayed scores were used. 

3. Digit Span Backward (WMS-III
UK

) tests working memory, with participants asked to 

recall increasingly long strings of numbers backwards. 

4. Spatial Span (WMS-III
UK

) tests non-verbal/spatial learning and memory. The 

participant observes a series of blocks being touched and then has to touch the blocks 

in the correct order. The procedure is repeated with participants required to touch the 

blocks in reverse order. Forward and backwards recall scores were used. 

5. Block Design (WAIS-III
UK

) participants are asked to use blocks to reproduce a 

diagram of a specific design.  

6. Matrix Reasoning (WAIS-III
UK

) tests abstract reasoning. Participants view an 

incomplete pattern within a matrix, and are required to select from a number of 

options which piece completes the matrix.  

7. Digit Symbol Coding (WAIS-III
UK

) tests speed of information processing. The 

participant is required to enter a symbol according to a particular number-symbol 

code. Participants are given 2 minutes to complete as many items as possible. 

8. Symbol Search (WAIS-III
UK

) tests speed of information processing. Participants are 

given two target symbols and have to decide (yes or no) whether either symbol 
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appears in a row of symbols. Participants are given 2 minutes to complete as many 

items as possible. 

9. Letter-Number Sequencing (WAIS-III
UK

) is conducted by testers reading increasingly 

long lists of letters and numbers, with participants asked to recall the list immediately 

afterwards by stating the numbers in numerical order and then the letters in 

alphabetical order. 

10. NART and WTAR are often used to estimate ‘prior cognitive ability level’ since they 

tap word recognition and pronunciation, a cognitive ability very robust against age- 

and trauma- related cognitive decline. Each requires the pronunciation of 50 irregular 

words. 

11. Verbal Fluency tests executive function. Participants are asked to list as many words 

as they beginning with C, and then F, and then L, with 1 minute for each letter. Here 

we used a total score across letters. 

12. Reaction Time tests speed of processing. Here we use both simple and 4-choice mean 

reaction time scores. In the simple task which had 20 trials, participants had to press a 

0 key as quickly as possible when presented with a 0 on screen. In the 4-choice task, 

which had 40 trials, participants are presented with a 1, 2, 3 or 4 on screen, and have 

to press the corresponding button (labelled 1, 2, 3 and 4) as quickly as possible. 

13. Inspection Time tests efficiency of visual discrimination. It is a forced-choice, two-

alternative psychophysical task using the method of constant stimuli. In each of the 

150 trials, participants are presented with two parallel vertical lines of very different 

lengths and, without time pressure, are asked to select which of the lines is longer. 

Stimulus durations range from 6 ms to 200 ms and stimuli were backward masked 

immediately after presentation. 
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Supplementary Material B 

Table B1: Factor loading matrix for exploratory factor analysis of the 18 cognitive tests. 

 Knowledge Verbal 

Declarative 

Memory 

Processing 

Speed 

Non-Verbal 

Reasoning 

Eigenvalue 6.19 1.95 1.26 1.23 

     

Wechsler Test of Adult Reading 0.94 0.03 0.01 0.03 

National Adult Reading Tests 0.89 0.08 0.03 0.01 

Verbal Fluency Total Score 0.31 0.00 0.29 0.07 

Logical Memory Delayed Recall 0.02 0.92 0.02 0.03 

Logical Memory Immediate Recall 0.05 0.91 0.02 0.00 

Verbal Paired Associates 2
nd

 Recall 0.11 0.42 0.08 0.11 

Verbal Paired Associates 1
st
 Recall 0.14 0.34 0.01 0.12 

Choice Reaction Time 0.04 -0.05 -0.80 0.01 

Digit Symbol 0.17 0.06 0.58 0.16 

Simple Reaction Time 0.02 -0.02 -0.52 0.05 

Symbol Search 0.12 -0.01 0.50 0.26 

Inspection Time Total Score 0.01 0.01 0.40 0.17 

Spatial Span Backwards -0.11 0.03 0.09 0.60 

Block Design 0.16 -0.02 0.06 0.60 

Spatial Span Forwards -0.12 0.03 0.09 0.55 

Matrix Reasoning 0.16 0.11 -0.02 0.53 

Digit Span Backwards 0.19 0.10 0.04 0.39 

Letter-Number Sequencing 0.18 0.13 0.21 0.35 

     

 

Note: All values >0.30 are displayed in bold as this was used as the cut-off for salience of factor loadings 

 


